加州大學(xué)河濱分校(University of California Riverside)的一名助理教授利用光合作用與物理學(xué)方法極大提高了太陽電池效率,這是一項(xiàng)重大發(fā)現(xiàn)。這項(xiàng)成果最近已經(jīng)發(fā)表在了《納米快報(bào)》(Nano Letters)上。
內(nèi)森·伽柏(Nathan Gabor)的研究重點(diǎn)是實(shí)驗(yàn)?zāi)蹜B(tài)物理,并利用光來探測量子力學(xué)的基本規(guī)律。2010年的一天,伽柏突然想到一個(gè)問題:植物為什么是綠色的?于是他對光合作用產(chǎn)生了興趣,并且他很快發(fā)現(xiàn),沒有人真正對該問題做出解釋。
為了解決這一問題,在過去6年里,伽柏帶著他的物理學(xué)背景深入到生物學(xué)領(lǐng)域。
同時(shí),他開始反思太陽能轉(zhuǎn)換效率的問題:能否制造一種材料,可以更高效地吸收太陽的波動(dòng)能量?
植物無疑是太陽能轉(zhuǎn)化高手。據(jù)伽柏介紹,目前的太陽電池,性能最好的不過20%的轉(zhuǎn)化效率,它們在太陽能量發(fā)生突變時(shí)表現(xiàn)很差。這樣很多能量就浪費(fèi)掉了,太陽電池難以作為主要能源的局限也在于此。
為此,伽柏和UCR一些物理學(xué)家設(shè)計(jì)了量子熱機(jī)光電池來解決這一問題。該設(shè)計(jì)采用熱動(dòng)力電池吸收來自太陽的光子,然后將光子的能量轉(zhuǎn)化為電能。這種光電池可以控制電池內(nèi)部的能量流。
目前用于屋頂和農(nóng)場的傳統(tǒng)光電技術(shù)需要用電壓轉(zhuǎn)換器和反饋控制器來抑制太陽能的波動(dòng),這極大限制了太陽能電池的整體轉(zhuǎn)化效率。但令研究人員意想不到的是,量子熱機(jī)光電池?zé)o需正反饋或者自適應(yīng)控制機(jī)制就能控制太陽能的轉(zhuǎn)換。這很令人驚艷。
內(nèi)森·伽柏所在的量子材料光電實(shí)驗(yàn)室。他們用紅外激光光譜技術(shù)來研究量子光電池的自然調(diào)控機(jī)制。
UCR團(tuán)隊(duì)想讓光電池盡可能匹配平均能量需求,并且通過抑制能量波動(dòng)來避免太陽電池的能量冗余,最終設(shè)計(jì)出最簡單的太陽電池。
研究人員對比了兩種最簡單的量子光電池:一種只吸收單色光,另一種吸收雙色光。結(jié)果發(fā)現(xiàn),雙光子通道可以使光電池自動(dòng)調(diào)節(jié)能量流。
這是因?yàn)閷τ陔p光子通道的光電池,其中一個(gè)通道吸收較高功率的光波,而另一通道則吸收較低功率的光波。光電池通過在高功率與低功率間轉(zhuǎn)換來穩(wěn)定輸出太陽能。
伽柏團(tuán)隊(duì)用這些簡單模型測量地表太陽能光譜時(shí),發(fā)現(xiàn)綠光在單位波長太陽能譜中的功率最高。綠光無益于能量流的調(diào)節(jié),應(yīng)當(dāng)被過濾掉。為了減少太陽能的波動(dòng),他們系統(tǒng)地優(yōu)化了太陽電池的參數(shù),并且發(fā)現(xiàn)太陽電池的吸收光譜與綠色植物的吸收光譜幾乎相同。
研究人員認(rèn)為,量子熱機(jī)光電池的能量自發(fā)調(diào)控機(jī)制或許就是植物光合作用的關(guān)鍵,它也有可能對植物在地球的生存優(yōu)勢做出解釋。
冗余能量在植物細(xì)胞內(nèi)積累可以殺死植物。最近有研究人員發(fā)現(xiàn),葉綠素A和葉綠素B等分子機(jī)構(gòu)可能是植物避免能量冗余的關(guān)鍵。UCR研究人員發(fā)現(xiàn)量子熱機(jī)光電池的分子結(jié)構(gòu)與光合作用植物的兩種葉綠素結(jié)構(gòu)很類似。
伽柏和團(tuán)隊(duì)提出的假說第一次將量子結(jié)構(gòu)和綠色植物聯(lián)系起來,并且為驗(yàn)證自發(fā)調(diào)控的研究人員提供了明確的測試方案。同樣重要的是,由于光電池的量子結(jié)構(gòu),他們的設(shè)計(jì)無需正反饋。
內(nèi)森·伽柏(Nathan Gabor)的研究重點(diǎn)是實(shí)驗(yàn)?zāi)蹜B(tài)物理,并利用光來探測量子力學(xué)的基本規(guī)律。2010年的一天,伽柏突然想到一個(gè)問題:植物為什么是綠色的?于是他對光合作用產(chǎn)生了興趣,并且他很快發(fā)現(xiàn),沒有人真正對該問題做出解釋。
為了解決這一問題,在過去6年里,伽柏帶著他的物理學(xué)背景深入到生物學(xué)領(lǐng)域。
同時(shí),他開始反思太陽能轉(zhuǎn)換效率的問題:能否制造一種材料,可以更高效地吸收太陽的波動(dòng)能量?
植物無疑是太陽能轉(zhuǎn)化高手。據(jù)伽柏介紹,目前的太陽電池,性能最好的不過20%的轉(zhuǎn)化效率,它們在太陽能量發(fā)生突變時(shí)表現(xiàn)很差。這樣很多能量就浪費(fèi)掉了,太陽電池難以作為主要能源的局限也在于此。
為此,伽柏和UCR一些物理學(xué)家設(shè)計(jì)了量子熱機(jī)光電池來解決這一問題。該設(shè)計(jì)采用熱動(dòng)力電池吸收來自太陽的光子,然后將光子的能量轉(zhuǎn)化為電能。這種光電池可以控制電池內(nèi)部的能量流。
目前用于屋頂和農(nóng)場的傳統(tǒng)光電技術(shù)需要用電壓轉(zhuǎn)換器和反饋控制器來抑制太陽能的波動(dòng),這極大限制了太陽能電池的整體轉(zhuǎn)化效率。但令研究人員意想不到的是,量子熱機(jī)光電池?zé)o需正反饋或者自適應(yīng)控制機(jī)制就能控制太陽能的轉(zhuǎn)換。這很令人驚艷。
內(nèi)森·伽柏所在的量子材料光電實(shí)驗(yàn)室。他們用紅外激光光譜技術(shù)來研究量子光電池的自然調(diào)控機(jī)制。
UCR團(tuán)隊(duì)想讓光電池盡可能匹配平均能量需求,并且通過抑制能量波動(dòng)來避免太陽電池的能量冗余,最終設(shè)計(jì)出最簡單的太陽電池。
研究人員對比了兩種最簡單的量子光電池:一種只吸收單色光,另一種吸收雙色光。結(jié)果發(fā)現(xiàn),雙光子通道可以使光電池自動(dòng)調(diào)節(jié)能量流。
這是因?yàn)閷τ陔p光子通道的光電池,其中一個(gè)通道吸收較高功率的光波,而另一通道則吸收較低功率的光波。光電池通過在高功率與低功率間轉(zhuǎn)換來穩(wěn)定輸出太陽能。
伽柏團(tuán)隊(duì)用這些簡單模型測量地表太陽能光譜時(shí),發(fā)現(xiàn)綠光在單位波長太陽能譜中的功率最高。綠光無益于能量流的調(diào)節(jié),應(yīng)當(dāng)被過濾掉。為了減少太陽能的波動(dòng),他們系統(tǒng)地優(yōu)化了太陽電池的參數(shù),并且發(fā)現(xiàn)太陽電池的吸收光譜與綠色植物的吸收光譜幾乎相同。
研究人員認(rèn)為,量子熱機(jī)光電池的能量自發(fā)調(diào)控機(jī)制或許就是植物光合作用的關(guān)鍵,它也有可能對植物在地球的生存優(yōu)勢做出解釋。
冗余能量在植物細(xì)胞內(nèi)積累可以殺死植物。最近有研究人員發(fā)現(xiàn),葉綠素A和葉綠素B等分子機(jī)構(gòu)可能是植物避免能量冗余的關(guān)鍵。UCR研究人員發(fā)現(xiàn)量子熱機(jī)光電池的分子結(jié)構(gòu)與光合作用植物的兩種葉綠素結(jié)構(gòu)很類似。
伽柏和團(tuán)隊(duì)提出的假說第一次將量子結(jié)構(gòu)和綠色植物聯(lián)系起來,并且為驗(yàn)證自發(fā)調(diào)控的研究人員提供了明確的測試方案。同樣重要的是,由于光電池的量子結(jié)構(gòu),他們的設(shè)計(jì)無需正反饋。