2004年以來,中科院金屬研究所沈陽材料科學(xué)國家(聯(lián)合)實(shí)驗(yàn)室一直致力于解決寬帶隙光催化材料的可見光全譜強(qiáng)吸收的難題。前期的系列研究揭示,摻雜原子的空間分布是決定摻雜能否縮小帶隙的本質(zhì)因素,即表面摻雜只能在帶隙中引入局域化能級(jí),體相摻雜可縮小帶隙。同時(shí),提出利用層狀結(jié)構(gòu)來實(shí)現(xiàn)摻雜原子在體相的均相分布的思路,增加光催化材料的可見光吸收。然而,如何在非層狀結(jié)構(gòu)材料如TiO2中實(shí)現(xiàn)摻雜原子的體相摻雜一直未獲突破。
最近,該實(shí)驗(yàn)室提出利用間隙原子弱化金屬原子與氧(M-O)的鍵合實(shí)現(xiàn)替代晶格氧的摻雜原子進(jìn)入體相的新機(jī)制,獲得了梯度摻雜的銳鈦礦TiO2,實(shí)現(xiàn)了可見光全譜強(qiáng)吸收,將TiO2光電解水產(chǎn)氫的活性光響應(yīng)范圍拓展至700nm。
摻雜陰離子難以進(jìn)入金屬氧化物體相本質(zhì)上是由M-O鍵的高鍵能以及摻雜離子與替代晶格離子間的電荷差異造成的。研究人員通過先期發(fā)展的“摻雜劑與前軀體合而為一”的特色制備思路,以TiB2晶體為前驅(qū)體,通過水熱及后續(xù)的熱處理過程獲得了間隙硼摻雜的銳鈦礦TiO2微米球,并且硼在從球表面至體相厚約50nm的范圍內(nèi)呈現(xiàn)梯度分布。理論研究表明,間隙Bσ+(σ ≤ 3)離子可有效弱化周圍的Ti-O鍵,使得N替代弱化后的Ti-O鍵的晶格氧所需的能量顯著降低,且間隙Bσ+的存在提高了N摻雜TiO2的穩(wěn)定性。實(shí)驗(yàn)發(fā)現(xiàn),在氨氣氣氛下熱處理梯度間隙Bσ+摻雜的銳鈦礦TiO2,不僅N3-可有效替代晶格氧,而且N3-的空間分布與間隙Bσ+保持一致,呈現(xiàn)類似的梯度分布,表明間隙Bσ+對(duì)N摻雜的空間分布起到了關(guān)鍵的導(dǎo)向作用。其根源在于Bσ+對(duì)周圍的Ti-O鍵的弱化,使得N3-選擇性替代體相中被弱化的Ti-O鍵中的氧。同時(shí),間隙Bσ+貢獻(xiàn)出的額外電子可有效補(bǔ)償N3-與O2-之間的電荷差異。
研究獲得的B/N梯度共摻雜銳鈦礦TiO2材料呈現(xiàn)出獨(dú)特的紅色(圖a),在可見光全譜范圍內(nèi)具有高的吸光率(圖b)。光催化性能研究表明,此材料的光電解水產(chǎn)氫活性響應(yīng)范圍接近700nm。該結(jié)果預(yù)示有可能利用TiO2基光催化材料來實(shí)現(xiàn)高效可見光分解水制氫。
該工作為如何基于摻雜實(shí)現(xiàn)寬帶隙光催化材料的可見光吸收提供了一種新思路,可用于發(fā)展高性能可見光光催化材料。研究結(jié)果已發(fā)表在Adv. Funct. Mater.(2012, 22, 3233-3238)、Energy & Environmental Science(2012, DOI:10.1039/C2EE22930G)。
該工作得到了國家自然科學(xué)基金委重大研究項(xiàng)目、科技部973項(xiàng)目和中科院“太陽能行動(dòng)計(jì)劃”的資助。
圖a:紅色TiO2的照片;圖b:紅色和白色TiO2的紫外-可見吸收光譜